Важное объявление!
У Нас Все раздачи мультитрекерные, при нуле пиров в релизах, можете смело вставать на закачку!
Автор Сообщение


4 года 3 месяца

Репутация: 101

[+] [-]
Вне форума [Профиль] [ЛС]

From 0 to 1: Machine Learning, NLP & Python-Cut to the Chase
Год выпуска: 2015
Производитель: Udemy
Сайт производителя: https://www.udemy.com/from-0-1-machine-learning/
Автор: Loony Corn
Продолжительность: 06:54:14
Тип раздаваемого материала: Видеоклипы
Язык: Английский
Описание: A down-to-earth, shy but confident take on machine learning techniques that you can put to work today
Prerequisites: No prerequisites, knowledge of some undergraduate level mathematics would help but is not mandatory. Working knowledge of Python would be helpful if you want to run the source code that is provided.
Taught by a Stanford-educated, ex-Googler and an IIT, IIM - educated ex-Flipkart lead analyst. This team has decades of practical experience in quant trading, analytics and e-commerce.
This course is a down-to-earth, shy but confident take on machine learning techniques that you can put to work today
Let’s parse that.
The course is down-to-earth : it makes everything as simple as possible - but not simpler
The course is shy but confident : It is authoritative, drawn from decades of practical experience -but shies away from needlessly complicating stuff.
You can put ML to work today : If Machine Learning is a car, this car will have you driving today. It won't tell you what the carburetor is.
The course is very visual : most of the techniques are explained with the help of animations to help you understand better.
This course is practical as well : There are hundreds of lines of source code with comments that can be used directly to implement natural language processing and machine learning for text summarization, text classification in Python.
The course is also quirky. The examples are irreverent. Lots of little touches: repetition, zooming out so we remember the big picture, active learning with plenty of quizzes. There’s also a peppy soundtrack, and art - all shown by studies to improve cognition and recall.
What's Covered:
Machine Learning:
Supervised/Unsupervised learning, Classification, Clustering, Association Detection, Anomaly Detection, Dimensionality Reduction, Regression.
Naive Bayes, K-nearest neighbours, Support Vector Machines, Artificial Neural Networks, K-means, Hierarchical clustering, Principal Components Analysis, Linear regression, Logistics regression, Random variables, Bayes theorem, Bias-variance tradeoff
Natural Language Processing:
Corpora, stopwords, sentence and word parsing, auto-summarization, sentiment analysis (as a special case of classification), TF-IDF, Document Distance
Text summarization, Text classification with Naive Bayes and K-Nearest Neighbours and Clustering with K-Means
Mail us about anything - anything! - and we will always reply


├── 01_-_Introduction
│ └── 01_-_What_this_course_is_about.mp4
├── 02_-_Jump_right_in_-_Machine_learning_for_Spam_detection
│ ├── 02_-_Machine_Learning_-_Why_should_you_jump_on_the_bandwagon.mp4
│ ├── 03_-_Plunging_In_-_Machine_Learning_Approaches_to_Spam_Detection.mp4
│ ├── 04_-_Spam_Detection_with_Machine_Learning_Continued.mp4
│ └── 05_-_Get_the_Lay_of_the_Land_-_Types_of_Machine_Learning_Problems.mp4
├── 03_-_Classification_-_A_form_of_supervised_learning
│ ├── 06_-_Classification_-_Problems_and_Techniques.mp4
│ └── 07_-_Bias_Variance_Trade-off.mp4
├── 04_-_Naive_Bayes_Classifier
│ ├── 08_-_Random_Variables.mp4
│ ├── 09_-_Bayes_Theorem.mp4
│ ├── 10_-_Naive_Bayes_Classifier.mp4
│ ├── 11_-_Naive_Bayes_Classifier_-_An_example.mp4
│ └── 12_-_Naive_Bayes_Classifier_-_Application_to_spam_detection.mp4
├── 05_-_K-Nearest_Neighbors
│ ├── 13_-_K-Nearest_Neighbors.mp4
│ └── 14_-_K-Nearest_Neighbors_-_A_few_wrinkles.mp4
├── 06_-_Support_Vector_Machines
│ ├── 15_-_Support_Vector_Machines_Introduced.mp4
│ └── 16_-_Support_Vector_Machines_-_Maximum_Margin_Hyperplane_and_Kernel_Trick.mp4
├── 07_-_Clustering_as_a_form_Unsupervised_learning
│ └── 17_-_Clustering_-_Problems_and_Techniques.mp4
├── 08_-_Association_Detection
│ └── 18_-_Association_Rules_Learning.mp4
├── 09_-_Dimensionality_Reduction
│ ├── 19_-_Dimensionality_Reduction.mp4
│ └── 20_-_Principal_Component_Analysis.mp4
├── 10_-_Artificial_Neural_Networks
│ ├── 21_-_Artificial_Neural_Networks_I_Perceptron_introduced_via_Support_Vector_Machines_.mp4
│ └── 22_-_Perceptron_-_How_it_works.mp4
├── 11_-_Regression_as_a_form_of_supervised_learning
│ └── 23_-_Regression_Introduced_-_Linear_and_Logistic_Regression.mp4
└── 12_-_Natural_Language_Processing_and_Python
├── 24_-_A_Serious_NLP_Application_-_Text_Auto_Summarization_using_Python.mp4
├── 25_-_Put_it_to_work_-_News_Article_Classification_using_K-Nearest_Neighbors.mp4
├── 26_-_Put_it_to_work_-_News_Article_Classification_using_Naive_Bayes_Classifier.mp4
├── 27_-_Document_Distance_using_TF-IDF.mp4
└── 28_-_Put_it_to_work_-_News_Article_Clustering_with_K-Means_and_TF-IDF.mp4
Файлы примеров: отсутствуют
Формат видео: MP4
Видео: AVC, 1280x720 (16:9), 29.970 fps, Zencoder Video Encoding System ~4 067 Kbps avg, 0.147 b
Аудио: 48.0 KHz, AAC LC, 2 ch, ~72.0 Kbps

Показать сообщения:    

Текущее время: Сегодня 19:25

Часовой пояс: GMT

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы