[O\'Reilly Media / Infinite Skills] Learning Apache Hadoop Training Video [2014, ENG] :: Ивановский Торрент трекер
Важное объявление!
У Нас Все раздачи мультитрекерные, при нуле пиров в релизах, можете смело вставать на закачку!
Статистика раздачи
Размер:     |    Зарегистрирован:     |    Скачан:     |   
Автор Сообщение


4 года 11 месяцев

Репутация: 101

[+] [-]
Вне форума [Профиль] [ЛС]

Learning Apache Hadoop Training Video
Год выпуска: 04/2014
Производитель: O'Reilly Media / Infinite Skills
Сайт производителя: oreilly.com, infiniteskills.com/training/learning-apache-hadoop.html
Автор: Rich Morrow
Продолжительность: 7:30
Тип раздаваемого материала: Видеоклипы
Язык: Английский
Описание: In this Introduction to Hadoop training course, expert author Rich Morrow will teach you the tools and functions needed to work within this open-source software framework. This course is designed for the absolute beginner, meaning no prior experience with Hadoop is required.
You will start out by learning the basics of Hadoop, including the Hadoop run modes and job types and Hadoop in the cloud. You will then learn about the Hadoop distributed file system (HDFS), such as the HDFS architecture, secondary name node, and access controls. This video tutorial will also cover topics including MapReduce, debugging basics, hive and pig basics, and impala fundamentals. Finally, Rich will teach you how to import and export data.
Once you have completed this computer based training video, you will be fully capable of using the tools and functions you’ve learned to work successfully in Hadoop. Working files are included, allowing you to follow along with the author throughout the lessons.


01. Introduction
0101 What Is Big Data?
0102 About The Author
0103 Historical Approaches
0104 Big data In The Modern World
0105 The Hadoop Approach
0106 Hadoop Hardware Requirements
0107 Hadoop Core Vs. Ecosystem
0108 Hadoopable Problems
0109 Hadoop Support Companies
0110 How To Access Your Working Files
02. Hadoop Basics
0201 HDFS And MapReduce
0202 Hadoop Run Modes And Job Types
0203 Hadoop Software Requirements And Recommendations
0204 Hadoop in the Cloud - Amazon Web Services
0205 Lab - Installing Hadoop From CDH With Cloudera Manager - Part 1
0206 Lab - Installing Hadoop From CDH With Cloudera Manager - Part 2
0207 Lab - Installing Hadoop From CDH With Cloudera Manager - Part 3
0208 Lab - Installing Hadoop From CDH With Cloudera Manager - Part 4
0209 Introduction To Hive And Pig Interface
0210 Installing Cloudera Quickstart VM
03. Hadoop Distributed File System (HDFS)
0301 HDFS Architecture
0302 HDFS File Write Walkthrough
0303 Secondary Name Node
0304 Lab - Using HDFS - Part 1
0305 Lab - Using HDFS - Part 2
0306 HA And Federation Basics
0307 HDFS Access Controls
04. MapReduce
0401 MapReduce Explained
0402 MapReduce Architecture
0403 MapReduce Code Walkthrough - Part 1
0404 MapReduce Code Walkthrough - Part 2
0405 MapReduce Job Walkthrough
0406 Rack Awareness
0407 Advanced MapReduce - Partioners, Combiners, Comparators And More
0408 Partitioner Code Walkthrough
0409 Java Concerns
05. Logging And Debugging
0501 Debugging Basics
0502 Benchmarking With Teragen And Terasort
06. Hive, Pig, And Impala
0601 Comparing Hive, Pig And Impala
0602 Hive Basics
0603 Hive Patterns And Anti-Patterns
0604 Lab - Hive Basic Usage
0605 Pig Basics
0606 Pig Patterns And Anti-Patterns
0607 Lab - Pig Basic Usage
0608 Impala Fundamentals
07. Data Import And Export
0701 Import And Export Options
0702 Flume Introduction
0703 Lab - Using Flume
0704 HDFS Interaction Tools
0705 Sqoop Introduction
0706 Lab - Using Sqoop
0707 Oozie Introduction
08. Conclusion
0801 Wrap-Up
Файлы примеров:
Формат видео: MP4
Видео: AVC, 1280x720, 16:9, 15fps, 397kbps
Аудио: AAC, 44.1kHz, 40kbps, mono


Показать сообщения:    

Текущее время: Сегодня 12:30

Часовой пояс: GMT

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы